The evolving role of PET/CT for neuroendocrine tumor imaging

Daniel A. Pryma, M.D.
Associate Professor of Radiology & Radiation Oncology
Chief, Division of Nuclear Medicine & Clinical Molecular Imaging
Perelman School of Medicine at the University of Pennsylvania
Neuroendocrine cancers

- Diverse group of neoplasms of various behaviors and origins
 - All originate from cells that share common elements with nerve cells
 - Neuron specific enolase
 - Chromogranin A
 - APUD: Amine Precursor Uptake and Decarboxylase
 - Often, but not always, secrete hormones
Carcinoid

- 5,000 new cases per year in the U.S.
- ~75% from GI tract
- ~25% bronchial
- Often presents with carcinoid syndrome
 - Diarrhea
 - Flushing
 - Abdominal pain
- Second most prevalent GI cancer
Pancreatic NETs

- Estimates of incidence vary, probably ~3,000 new cases per year in U.S.
 - 1-2% of clinically significant pancreatic neoplasms

- Various cells of origin result in various symptoms
 - Gastrinoma, insulinoma, VIPoma, glucagonoma, somatostatinoma
Other NETs

- Gastroenteropancreatic neuroendocrine tumors (GEPNETS)
 - Umbrella category
- Bronchial carcinoid
- Unknown primaries
Pheochromocytoma/Paraganglioma

- Rule of 10s:
 - ~10% of cases are bilateral
 - ~10% of cases are extraadrenal
 - ~10% of cases are malignant
 - ~10% of cases are genetically predisposed
Paraganglioma

Name pheochromocytoma describes location of origin

Paraganglioma arises outside the adrenal
Parasympathetic paraganglioma

- More often head and neck origin
- Almost always benign
- Usually non-functioning
- SDHC
 - Lesser extent SDHD
Sympathetic paraganglioma

- Often abdominal
 - Organ of Zuckerkandl
 - Retroperitoneal
- Much higher malignancy rate (up to 1/3?)
- Often functioning
- SDHB
 - Also VHL, NF1, MEN-2
Neuroblastoma

Most common extracranial solid tumor of childhood

- Most common malignancy in first year of life

- ~600 new cases annually in US

- <10% of new cases in patients > 5 years old
Neuroblastoma

- Originate from neural crest cells
 - Most common primary site is retroperitoneum
 - Primaries can be found in neck, posterior mediastinum and pelvis
- ~60% have metastatic disease at presentation
 - Bone, nodes and liver most common
- Prognosis is dismal
Neuroendocrine cancers
Bottom line

- Myriad unique diseases
- Have a lot in common
 - Some surprising shared therapeutic targets
meta-Iodobenzylguanididine (MIBG)

- Described by Wieland et al in 1979 at University of Michigan
- Iodination in the meta position
- Not a norepinephrine analog
- Substrate for NET
I-123 versus I-131 MIBG

Both FDA approved

<table>
<thead>
<tr>
<th>I-123 MIBG</th>
<th>I-131 MIBG</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2 h half life</td>
<td>8 d half life</td>
</tr>
<tr>
<td>10 mCi dose</td>
<td>0.5 mCi dose</td>
</tr>
<tr>
<td>159 keV photopeak</td>
<td>364 keV photopeak</td>
</tr>
<tr>
<td>Primarily γ</td>
<td>Lower resolution</td>
</tr>
<tr>
<td>Limited availability*</td>
<td>γ and β^-</td>
</tr>
<tr>
<td>Expensive</td>
<td>Widely available</td>
</tr>
<tr>
<td>SPECT or SPECT/CT</td>
<td>SPECT impossible (for diagnostic scans)</td>
</tr>
<tr>
<td>Lower thyroid exposure</td>
<td></td>
</tr>
</tbody>
</table>

*Limited availability indicates that I-123 MIBG may not be available in all regions due to regulatory and supply issues.
A phantom study: should 124I-mIBG PET/CT replace 123I-mIBG SPECT/CT?

Casper Beijst1,2, Bart de Keizer1, Marnix G.E.H. Lam1, Geert O. Janssens3, Godelieve A.M. Tytgat4, Hugo W.A.M. de Jong3
Importance of SPECT
Importance of SPECT

Clin Nucl Med, 30(2) 2005
Somatostatin receptor

- 5 known subtypes
- 7 transmembrane domains
- Highly expressed in GI tract
- Generally inhibitory function
- Expressed on huge number of cancers
 - Not limited to neuroendocrine cancers
- SSTR-2 most commonly expressed on cancers
Somatostatin Analogs

- Most neuroendocrine cancers express somatostatin receptors
- Somatostatin has incredibly short half life
- Oligopeptide analogs with longer half lives
Octreoscan (In-111-pentetretotide)

- Highest affinity for SSTR-2
- Lesser for SSTR-5 and SSTR-3
- Inject 6 mCi In-111-pentetretotide intravenously
- Planar whole body images at 4 and 24 hours
- SPECT(/CT) of abdomen at 4 hours
- SPECT(/CT) of chest at 24 hours
- Some sites image at 48 hours and beyond
- Lots of bowel activity
Planar octreoscan

4 hours

24 hours
Somatostatin PET imaging

- Ga-68 DOTA-somatostatin analog
 - Recently approved in US
 - Ga-68 DOTATATE (Netspot)

- PET/CT gives:
 - Higher resolution
 - Higher contrast
PET vs planar

Permutations

- Octreotide
 - DTPA - pentetreotide
 - DOTA – DOTATOC
 - DOTANOC
- Octreotate
 - DOTA – DOTATATE
- Antagonists
 - In-111
 - Ga-68
 - Lu-177
 - Y-90
 - Etc.
Ga-68 DOTATATE PET/CT Imaging protocol

- Minimal patient prep
 - Encourage hydration
 - Schedule as far from somatostatin analog as possible
- Inject 0.054 mCi/kg up to 5.4 mCi
- Image at 45-60 minutes post injection
 - Some image later
- Oral, IV contrast optional
 - Patients predisposed to diarrhea
- Patient in and out in under 2 hours
Ga-68

- Generator produced
 - Ge-68 parent, 271 d half-life
 - Ga-68 daughter, 68 minute half-life
- Can elute ~3x/working day
- 3 doses per day
- Timing is critical
Radiopharmaceutical effective dose:

- Ga-68 DOTATATE 3.15 mSv
- In-111 Octreoscan 26 mSv
Insurance coverage

- CMS pass-through drug coverage
- Bill scan and drug separately
- Private insurers/RBM's slowly coming up to speed
 - Thanks Dr. Metz (and others)!
What to use when

Now and future directions
Synthesis and evaluation of 18F-labeled benzylguanidine analogs for targeting the human norepinephrine transporter

Hanwen Zhang · Ruimin Huang · NagaVaraKishore Pillarsetty · Daniel L. J. Thorek · Ganesan Vaidyanathan · Inna Serganova · Ronald G. Blasberg · Jason S. Lewis

Synthesis and evaluation of 4-[18F]fluoropropoxy-3-iodobenzylguanidine ([18F]FPOIBG): A novel 18F-labeled analogue of MIBG

Ganesan Vaidyanathan *, Darryl McDougald, Eftychia Koumarianou, Jaeyeon Choi, Marc Hens, Michael R. Zalutsky
Imaging intentions

- Not always disease detection
- Theranostics/companion diagnostics
 - Assess suitability for therapy
 - Measure kinetics
 - Evaluate response
Lesional dosimetry

203 rad/mCi

229 rad/mCi

125 rad/mCi

Courtesy of John Humm, PhD
68Ga-DOTATATE and 18F-FDG PET/CT in Paraganglioma: Utility, Pattern of Spread, and Correlation with Tumor Blood Flow.
Metastatic paraganglioma
Metastatic paraganglioma
Metastatic paraganglioma
Metastatic paraganglioma
Metastatic paraganglioma
Feasibility and advantage of adding 131I-MIBG to 90Y-DOTATOC for treatment of patients with advanced stage neuroendocrine tumors

David L. Bushnell1,2, Mark T Madsen3, Thomas O’codirisio3, Yusuf Menda1, Saima Muzahir1, Randi Ryan4 and M Sue O’dorisio5

<table>
<thead>
<tr>
<th>Organ dose limits</th>
<th>Maximum activity (GBq) 90Y-DOTA alone (given over multiple cycles)</th>
<th>Optimum percentage of maximum 90Y activity to be given when adding MIBG</th>
<th>Activity (GBq) of 131I-MIBG that can be added without exceeding limits</th>
<th>Tumor dose (cGy): 90Y-DOTA given alone</th>
<th>Tumor dose (cGy): 90Y + 131I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney</td>
<td>2,300</td>
<td>4.9</td>
<td>75</td>
<td>33.3</td>
<td>1,006</td>
</tr>
<tr>
<td>Marrow</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Meta-analysis of 42/2,479 publications

Attempt to estimate sensitivity/specificity of PET vs SPECT

Considerable statistical and data quality limitations

PET sensitivity ~91%, specificity 91%

Probably superior to SPECT
Mesenteric adenopathy
SPECT/CT vs PET/CT
Liver mass, unknown primary
Conclusions

- PET/CT improves signal-noise
 - Better contrast, lesion detectability

- Ga-68 DOTATATE excellent diagnostic quality
 - Broad spectrum of neuroendocrine cancers
 - Short half-life
 - Causes logistical urgencies
 - Limits utility as companion diagnostic

- Multiple other potential agents in development
 - Therapeutics to match coming soon!
Thank you