Integrating MRI and PSMA PET Imaging in Prostate Cancer

Peter L. Choyke MD and Baris Turkbey MD
Molecular Imaging Program, National Cancer Institute
National Institutes of Health, Bethesda, MD
Natural History of Prostate Cancer

- Local Therapy
- Castration
- Castration Resistance
- Metastatic
- Localized
- Biochemical recurrence
- Castration Sensitive
- Castration Resistant Metastases
- Non-Metastatic
- Metastatic
- Castration Sensitive
- Castration Resistant

Time

Death
How can PET imaging help?

- **For localized disease:** Staging
 - Is there disease in nodes or bones?
 - Is there disease in seminal vesicles?

- **For Recurrent disease:** Restaging
 - Is there residual tumor in prostate bed?
 - Is there nodal or bony disease?

- **For Metastatic disease:**
 - What is extent of disease?
 - Is it progressing or responding to therapy?
The Development of Prostate Imaging and Image Guided Biopsy 2000-2016

- Multiparametric MRI 2000’s
- In gantry biopsy 2003-6
- MRI-TRUS-GPS-2006
- Clinic MR-TRUS Fusion 2008
- Commercial MR-TRUS fusion Devices 2013
- World wide- Image Guided Bx (IGB) 2016
Prostate Specific Membrane Antigen (PSMA)

- PSMA (prostate specific membrane antigen) is a transmembrane protein, which is highly expressed in many prostate cancers, particularly high grade cancers.
- Urea-based compounds have high affinity for the enzymatic domain of PSMA and are used for PET imaging.
Lutje et al Theranostics 2016
PSMA PET Imaging

• Available PSMA targeting PET tracers:
 • 68Ga Labelled:
 • 68Ga-PSMA-11 (68Ga-PSMA-HBED-CC)
 • 18F Labelled:
 • 18F-DCFBC
 • 18F-DCFPyL
Comparison of ^{68}Ga and ^{18}F

<table>
<thead>
<tr>
<th></th>
<th>^{68}Ga</th>
<th>^{18}F</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>generator production</td>
<td>cyclotron</td>
<td></td>
</tr>
<tr>
<td>1899</td>
<td>Positron energy (keV)</td>
<td>633</td>
</tr>
<tr>
<td>89%</td>
<td>Positron yield</td>
<td>96%</td>
</tr>
</tbody>
</table>
68Ga PSMA-11 PET

- Small ligand, imaged 60 minutes after injection

- 319 PC pts Afshar-Oromieh et al 2015
 - Lesion-based analysis: Sens, Spec, NPV, PPV: 76.6%, 100%, 91.4% and 100%
 - Patient-based analysis: sensitivity 88.1%
 - 416 histological lesions: 30 false negative on 68Ga

- BCR in 248 pts after RP Eiber et al 2015

- PET/MR more accurate than PET/CT Afshar-Oromieh et al 2014

<table>
<thead>
<tr>
<th>Tumor detection rate (%)</th>
<th>PSA (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>0.2-0.5</td>
</tr>
<tr>
<td>73</td>
<td>0.5-1</td>
</tr>
<tr>
<td>93</td>
<td>1-2</td>
</tr>
<tr>
<td>97</td>
<td>≥2</td>
</tr>
</tbody>
</table>
68Ga-PSMA PET/CT demonstrating a patient representative for disseminated lymph node and bone metastases of prostate cancer.
71-year old man with PSA=4ng/ml after radical prostatectomy.

Courtesy of Dr. Frederik Giesel from University of Heidelberg, Germany
18F-DCFBC PET

- 18F- N-[N-[N-(S)-1,3-dicarboxypropyl] carbamoyl]-4-[18F]fluorobenzyl-l-cysteine
- Low molecular weight PSMA inhibitor
- 5 pts with PCa metastases Cho et al 2012
 - Biodistribution, dosimetry
 - 32 PET positive lesions
 - 21 concordant with conventional imaging
 - 11 only with DCFBC, most in bone
T2W MRI

ADC map

B=2000 DWI

DCE MRI permeability map

TRUS/MRI fusion guided biopsy Gleason 4+5 prostate cancer

18F-DCFBC PET study localizes the anterior TZ lesion
66-year old man, Gleason 4+5 PSA=216ng/ml
64-year old man, Gleason 5+4 PSA=39ng/ml with seminal vesicle and nodal metastases
69-year old man, S/P RP 6 years ago, PSA=0.25ng/ml
58-year old man, S/P radical prostatectomy, PSA=1.4ng/ml with recurrence at anastomosis
54-year old man, S/P radical prostatectomy, PSA=0.6ng/ml
54-year old man, S/P radical prostatectomy, PSA=0.9ng/ml with recurrence at right seminal vesicles
DCFBC 107 (JM) -
Arm 2: s/p RP + RT, PSA = 1.97 ng/ml (09/12/2016)

Focal abnormal DCFBC uptake fusing to a 1.6x1.9 cm left common iliac lymph node [SUV$_{\text{max}}$ 12.3]
Very subtle DCFBC uptake fusing to a small sclerotic bony lesion in the right ischium.

DCFBC 107 (JM) - Arm 2: s/p RP + RT, PSA = 1.97 ng/ml (09/12/2016)
68-year old man, S/P radical prostatectomy, PSA=9ng/ml
65-year old man on ADT, PSA=7.1ng/ml

18F-DCFBC PET
Paraaortic and iliac nodes

18F- NaF PET: negative for metastases
73-year old man on ADT, PSA<0.01ng/ml

R Ilium bone lesion: Positive on NaF, negative on DCFBC PET
72 year old man on ADT: PSA 1.2ng/ml NaF(+) DCFBC (±). Is this patient in transition to AR status?
18F-DCFPyL PET

- 2-(3-{1-carboxy-5-[6-18F]fluoro-pyridine-3-carbonyl]-amino]-penty]-ureido)-pentanedioic acid.
- Markedly reduced blood pool activity with corresponding overall higher uptake in prostate cancer.
- Superior to conventional imaging (8 patient pilot study by Rowe et al 2016).
- Commercial sponsor (now in phase 3 study).
18F-DCFPyL PET images a patient with multiple bony and nodal metastases.

Image courtesy of Dr. Martin Pomper, JHU
Metastatic lymph nodes with variable sizes (4-6mm [arrows] and 20mm[arrowhead]) with selective uptake of 18F-DCFPyL in a prostate cancer patient.
A model of progressive reprogramming

Androgen-dependent, AR⁺
In castrate-resistant prostate cancer (luminal epithelial adenocarcinoma), cells express and depend upon androgen receptor (AR⁺) for growth.

Androgen-indifferent, AR⁺⁻⁻
After treatment with an AR antagonist, cells with altered RB1 and TP53 are selected. Factors including SOX2 and EZH2 contribute to dedifferentiation and plasticity.

Androgen-independent, AR⁻⁻⁻
Cells established are most often reprogrammed to the neuroendocrine lineage that is resistant to enzalutamide.
Neuroendocrine Prostate + GaDOTATATE study
Current and Recently Completed Prostate PET Clinical Trials by Tracer

Note: completed refers to trials completed in last 6 months

courtesy: Christine Lorenz Siemens
Current Prostate PET Clinical Trials

Locations for Top 5 Tracers in Evaluation

68Ga-PSMA
- USA, Canada, Austria, Belgium

18F-FACBC
- USA, Norway, UK

18F-NaF
- Switzerland, USA, Canada

18F-DCFPyl
- Canada, USA

11C-acetate
- USA

source: www.clinicaltrials.gov

courtesy: Christine Lorenz Siemens
Clinical Uses of PSMA PET

• Localized prostate cancer:
 • Lesion detection
 • TNM staging
• Biochemical recurrence after prostatectomy, xRT, brachytherapy
• Metastatic disease
 • Determining the tumor burden
 • Understand ADT response status?
Integrating MRI into PSMA PET

• MRI is very helpful in localizing PSMA uptake in primary tumors
 • Informs regarding EPE, SVI
 • Localization of local node and bone disease

• MRI is critical for localizing regional recurrence positive on PSMA
 • Localizing periurethral recurrence
 • Localizing residual SVI and node/bone disease

• MRI is helpful in verifying structural abnormalities in sites of PSMA uptake in metastatic diseased
Thank you...