Unparalleled Contribtions of 18F-FDG-PET Imaging to Medicine Over the Past Four Decades

Abass Alavi, M.D.

M.D.(Hon), Ph.D.(Hon), D.Sc.(Hon)

Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania

How did this journey begin and where is it heading?

14C-deoxyglucose autoradiography

14C-deoxyglucose autoradiography

PERG 5752. 5943 v 42.W 39. 145 FILM NO.: 2 138 00 -65.01 109. 132 126 02 288.03 -26. 120 113 LUMP CON = 0.483 107 101 SECT 123 95 BARREL B3 88 82 76 69

Concept of Fluorodeoxyglucose (F

Alavi, Kuhl, Reivich (University of Pennsylvania)

Wolf, Ido, Fowler (Brookhaven National Laboratory)

December 1973

Blood

The First Brain FDG Image 1976

The first whole body human FDG scan was performed by Abass Alavi in August 1976 at University of Pennsylvania by employing a conventional rectilinear machine as the only option at the time.

Relative Sensitivity of Molecular Imaging Modalities

Sensitivity	Modality	Agents	н	R	Primary uses	Examples
рМ	FMT	fluorescent proteins		X	gene expression, tagging superficial structures	GFP, RFP, NIRF probes
	BLI	luciferin		X	gene expression, therapeutic monitoring	fLuc rLuc
	SPECT	^{99m} Tc, ^{123/5} I, ¹¹¹ In	X	X	site-selectivity, protein labeling	^{99m} Tc-annex in V, ¹²³ I-A85380
n <i>M</i>	PET	¹¹ C, ¹⁸ F, ¹²⁴ I, ^{64/62/60} Cu	X	X	site-selectivity, gene expression, drug development	¹¹ C-RAC, ¹²⁴ I- FIAU, ⁶⁴ Cu-ATSM
	spectro- scopy	endogenous metabolites	X	X	CNS, prostate , heart , breast	NAA, Cr, Cho, Glx, ml, ³¹ P
μ <i>Μ</i> (10 μm)	contrast agents	Gd, Mn, FeO		X	cell trafficking, enzymatic activation	poly-L-lysine, dendrimers, MION
	contrast agents	perfluorinated microbubbles		X	drug-delivery, gene transfection	human albumin (Optison)

Integrated PET-CT Systems

GE

Philips

Current and Potential Indications for FDG-PE Imaging

 CNS Disorders (AD, Seizures disorders)

- Cancer
- Infection
- Inflammation
- Myocardial Viability
- Atherosclerosis
- Muscle Dysfunction
- Clot detection

Normal Variation and Effects of Aging on Organ Function and Structure as Demonstrated by Modern Imaging Modalities

Abass Alavi, M.D. M.D.(Hon),Ph.D.(Hon), D.Sc.(Hon) University of Pennsylvania School of Medicine

Correlation between age and whole brain metabolic rate (age range: 18-85 years).

• CANCER DIAGNOSIS

1 10 1

58 yrs old female with Palpable mass in Right Breast

• CANCER SATAGING

Staging widespread melanoma

• ASSESSING RESPONSE TO THERAPY

Early Assessment for Response

CT BASED PRACTICE

• PET BASED PRACTICE

Therapy "B"

DETECTION OF RECURRENCE

The Role of PET-CT/MRI Coregistration in Radiation Therapy

FDG-PET for the Diagnosis of Infections and inflammation

Sinus Track Connecting Soft-Tissue Abscess With Bo

SPGR = spoiled gradient.

FDG-PET/CT in Diabetic Foot

FDG-PET Image- vasculitis is confirmed.

Otsuka H, Morita N, Yamashita K, Nishitani H. FDG-PET/CT for diagnosis and follow-up of vasculitis. J Med Invest. 2007 Aug;54(3-4):345-9.
Inflammatory Bowel Disease

Atherosclerosis

First Hour

Second Hour

Third Hour

FDG PET CT – Inflammation in Aorta

b

FDG PET + CT

61-year-old caucasian male

- Adipose, recent pneumonia and gout, bedridden for weeks
- 2 day history of swelling and tenderness of right lower extremity
- D-dimer 19 mg/L (ref. < 0.5 mg/L), Wells' score 4
- CUS: RLE DVT (mid-femoral to distal calf)
 PET/CT: Positive for RLE DVT, otherwise normal

Differential dynamics of FDG between malignant and inflammatory cells

[¹⁸F] FDG – the Molecule of the Century Uptake and Metabolism

Blood

Retention Index: SUVmean

Lung Ca, additional pleural and Lymph nodes mets

FIRST TIME POINT (Early)

SECOND TIME POINT (Delay)

DUAL TIME IN A GIN MESOTHELIOMA

Early Image Max SUV= 3.5

Delayed Image Max SUV= 4.8

RESULTS

Table						
Histopatholo gy	Avg. SUVmax 1	Avg. SUVmax 2	Avg. Percent SUV Change (%)			
Malignant Mesotheliom a (n = 28)	4.6 ±2.5	5.3 ±2.8	14.0 ±12.4			
Benign Pleural Disease (n = 4)	1.5 ±0.2	1.3±0.2	-10.5 P_20.02 ±21.6			

3-hour

Temporal profile of FDG uptake in Lung Cancer

Basu S et al, QJNM 2008

Assessing Tumor Biology and Forecasting Prognosis

Assessment of Tumor Biology in Breast Cancer

Based on Time Course of FDG in the Primary Site

	Primary Breast lesions in patients without Axillary or Distant Metastasis	Primary Breast lesions in patients with Axillary Metastasis	Primary Breast lesions in Patients with Distant Metastasis	β
SUVmax1	2.9 ± 2.7	4.8 ± 3.9	7.7 ± 6.2	0.01*
SUVmax2	3.4 ± 2.4	5.3 ± 4.5	8.9 ± 7.1	0.01*
%∆SUVmax	4.5 ± 4.2%	9.4 ± 12.8%	15.7 ± 10.8%	>0.05

SUVs in the primary lesions were highest in Gp II (those with both axillary and distant metastases), followed by Gp I (those with only metastatic axillary adenopathy) and Gp III (patients without any metastasis)

Global metabolic activity (GMA)

V = 306.25 cc MVP = 5175.79 SUV cc cMVP = 9333.10 SUV cc Δ MVP = 80.3%

Torigian DA et al, unpublished data DL

DLBCL

Life Beyond FDG

- FLT (DNA Synthesis) %((())
 ⁶⁰Cu-ATSM, ¹⁸F-EF5, ¹⁸F-FMISO
- (Assessment for hypoxia)
- FIAU, FHBG, FHPG (Gene therapy)
- ¹¹C-Acetate (Slow growing tumors)
- ¹⁸F or ¹¹C -labeled Choline
- (Slow growing tumors)
- ¹⁸F-Fuoride (Bone imaging)

Imaging of Non-small Cell Lung Cancer

AF Shields, JR Grierson, BM Dohmen, H-J Machulla et al. Nature Med 4:1334, 1998

90 Minutes

Comparison of Average SUVmean-asc

The mean±SD of SUVmean-arch for healthy and non-healthy subjects were 0.83±0.20 and 1.02±0.29, respectively; and this difference was significant (P value<0.001). The spearman CC of healthy and non-healthy subjects were 0.37 (P=0.001) and 0.67 (P<0.001), respectively. The trend-lines for both SUVmean-asc(freatthy) below.

Global cardiac¹⁸**F-NaFup**

The CT, PET, and PET/CT images shown above from two normal subjects, a 28 year-old male (A) and a 64 year-old female (B). The femoral neck activity is anatomically defined with the medial boundaries based on the epiphyseal line and lateral boundaries by the intertrochanteric ridge. Based on this delineation, quantitative metrics were generated in both subjects. Total calcium metabolism (TCM = SUVmean*metabolically active volume) in patient (A) was 6715.79 while TCM in patient (B) was 2587.44.

FIGURE 5. Heart uptake and DAR from control and apoE -/- mice. (A) Mean heart uptake obtained after intravenous administration of [¹²⁵I]IONPs into healthy and atherosclerotic mice (n=4). (B) Mean heart-toblood ratios obtained after intravenous administration of [¹²⁵I]IONPs into healthy and atherosclerotic mice (n=4). (C) DAR obtained from heart of healthy and atherosclerotic mice, respectively, at 72 h post-injection of [¹²⁵I]IONPs (20 µCi, 0.8 mg Fe/kg).

Philips Ingenuity TF PET/MR

Sequential PET and MR imaging

CE Mark in Europe FDA 510(k) clearance in US

http://multivu.prnewswire.com/mnr/philips/4819 7/

Potentional Future Applications

Neurological Disorders and Diseases

Cardiovascular Disorders and Diseases

Musculoskeletal Disorders and Diseases

Fusion Imaging of PET and MRI Metabolic Function in In-vivo Human Brainstem

Anatomy Obtained by 7.0T MRI

SUVR of Glucose Metabolism By Fusion PET-MRI

FDG PET/CT in Cardiac Sarcoidosis

Cardiac MRI

FDG PET/MRI

Images in a 51-year-old man with history of cardiac dysrhythmias and sarcoidosis who underwent evaluation for cardiac involvement. Axial software-fused FDG PET/MR image of heart demonstrates heterogeneously increased FDG uptake (arrows) in left ventricular myocardium.

Torigian DA et al. Radiology. 2013 Apr;267(1):26-44.

FDG-PET/CT in Diabetic Foot

Hochhold J et al. Society of Nuclear Medicine; 2005.

Imaging Plaques and Tangles in Patients with Cognitive Impairment

Normal vs. Alzheimer's Diseased Brain

Alzheimer's

 FDG-PET-CT Imaging has had a substantial impact on research and on the day to day practice of medicine. This has resulted in minimizing pain and suffering for millions of patients with serious diseases/disorders and in reducing cost of health care worldwide.

Thank You

Thank you